Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.788
Filtrar
1.
Mol Neurodegener ; 19(1): 36, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641847

RESUMEN

The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.


Asunto(s)
COVID-19 , Ferroptosis , Melatonina , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Antioxidantes/metabolismo , Encéfalo/metabolismo , Envejecimiento , Hierro/metabolismo
2.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558122

RESUMEN

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Asunto(s)
Melatonina , Glándula Pineal , Animales , Glándula Pineal/metabolismo , Genes Homeobox , Melatonina/metabolismo , Roedores/genética , Roedores/metabolismo , Factores de Transcripción/metabolismo , Ritmo Circadiano
3.
J Pineal Res ; 76(3): e12951, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572848

RESUMEN

Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.


Asunto(s)
Melatonina , Animales , Melatonina/metabolismo , Neuroprotección , Retina/metabolismo , Receptores de Melatonina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Mamíferos/metabolismo
4.
J Pineal Res ; 76(3): e12952, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587234

RESUMEN

Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Animales , Humanos , Receptores de Melatonina , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Melatonina/metabolismo , Transducción de Señal , Receptores Acoplados a Proteínas G , Mamíferos/metabolismo
5.
J Pineal Res ; 76(3): e12955, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606787

RESUMEN

Identifying the target cells of a hormone is a key step in understanding its function. Once the molecular nature of the receptors for a hormone has been established, researchers can use several techniques to detect these receptors. Here I will review the different tools used over the years to localize melatonin receptors and the problems associated with each of these techniques. The radioligand 2-[125I] iodomelatonin was the first tool to allow localization of melatonin receptors on tissue sections. Once the MT1 and MT2 receptors were cloned, in situ hybridization could be used to detect the messenger RNA for these receptors. The deduced amino acid sequences for MT1 and MT2 receptors allowed the production of peptide immunogens to generate antibodies against the MT1 and MT2 receptors. Finally, transgenic reporters driven by the promoter elements of the MT1 and MT2 genes have been used to map the expression of MT1 and MT2 in the brain and the retina. Several issues have complicated the localization of melatonin receptors and the characterization of melatonin target cells over the last three decades. Melatonin receptors are expressed at low levels, leading to sensitivity issues for their detection. The second problem are specificity issues with antibodies directed against the MT1 and MT2 melatonin receptors. These receptors are G protein-coupled receptors and many antibodies directed against such receptors have been shown to present similar problems concerning their specificity. Despite these specificity problems which start to be seriously addressed by recent studies, antibodies will be important tools in the future to identify and phenotype melatonin target cells. However, we will have to be more stringent than previously when establishing their specificity. The results obtained by these antibodies will have to be confronted and be coherent with results obtained by other techniques.


Asunto(s)
Melatonina , Receptor de Melatonina MT2 , Receptores de Melatonina/metabolismo , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Melatonina/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Encéfalo/metabolismo , Secuencia de Aminoácidos
6.
J Pineal Res ; 76(2): e12941, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38606814

RESUMEN

The labeled ligand commonly employed in competition binding studies for melatonin receptor ligands, 2-[125I]iodomelatonin, showed slow dissociation with different half-lives at the two receptor subtypes. This may affect the operational measures of affinity constants, which at short incubation times could not be obtained in equilibrium conditions, and structure-activity relationships, as the Ki values of tested ligands could depend on either interaction at the binding site or the dissociation path. To address these issues, the kinetic and saturation binding parameters of 2-[125I]iodomelatonin as well as the competition constants for a series of representative ligands were measured at a short (2 h) and a long (20 h) incubation time. Concurrently, we simulated by molecular modeling the dissociation path of 2-iodomelatonin from MT1 and MT2 receptors and investigated the role of interactions at the binding site on the stereoselectivity observed for the enantiomers of the subtype-selective ligand UCM1014. We found that equilibrium conditions for 2-[125I]iodomelatonin binding can be reached only with long incubation times, particularly for the MT2 receptor subtype, for which a time of 20 h approximates this condition. On the other hand, measured Ki values for a set of ligands including agonists, antagonists, nonselective, and subtype-selective compounds were not significantly affected by the length of incubation, suggesting that structure-activity relationships based on data collected at shorter time reflect different interactions at the binding site. Molecular modeling simulations evidenced that the slower dissociation of 2-iodomelatonin from the MT2 receptor can be related to the restricted mobility of a gatekeeper tyrosine along a lipophilic path from the binding site to the membrane bilayer. The enantiomers of the potent, MT2-selective agonist UCM1014 were separately synthesized and tested. Molecular dynamics simulations of the receptor-ligand complexes provided an explanation for their stereoselectivity as due to the preference shown by the eutomer at the binding site for the most abundant axial conformation adopted by the ligand in solution. These results suggest that, despite the slow-binding kinetics occurring for the labeled ligand, affinity measures at shorter incubation times give robust results consistent with known structure-activity relationships and with interactions taken at the receptor binding site.


Asunto(s)
Melatonina , Quinolinas , Ligandos , Receptores de Melatonina , Melatonina/metabolismo , Amidas , Receptor de Melatonina MT2/metabolismo , Receptor de Melatonina MT1/metabolismo
7.
Reprod Domest Anim ; 59(3): e14543, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38459831

RESUMEN

This study aims to investigate the effects of melatonin on follicular growth, viability and ultrastructure, as well as on the levels of mRNA for antioxidant enzymes, reactive oxygen species (ROS) and meiotic progression in oocytes from in vitro cultured bovine early antral follicles. To this end, isolated early antral follicles (500-600 µm) were cultured in TCM-199+ alone or supplemented with 10-6 , 10-7 or 10-8 M melatonin at 38.5°C with 5% CO2 for 8 days. Follicle diameters were evaluated at days 0, 4 and 8 of culture. At the end of culture, ultrastructure, chromatin configuration, viability (calcein-AM and ethidium homodimer-1 staining), and the levels of ROS and mRNA for catalase (CAT), superoxide dismutase (SOD) and peroxiredoxin 6 (PRDX6) and glutathione peroxidase (GPx) were investigated in oocyte-granulosa cell complexes (OGCs). The results showed that early antral follicles cultured with 10-6 and 10-8 M melatonin had a progressive and significant increase in their diameters throughout the culture period (p < .05). Additionally, oocytes from follicles cultured with 10-7 or 10-8 M melatonin had increased fluorescence for calcein-AM, while those cultured with 10-6 or 10-7 M had reduced fluorescence for ethidium homodimer-1. Different from follicles cultured in other treatments, those cultured with 10-8 M melatonin had well-preserved ultrastructure of oocyte and granulosa cells. Melatonin, however, did not influence the levels of ROS, the mitochondrial activity, oocyte meiotic resumption and expression mRNA for SOD, CAT, GPX1 and PRDX6. In conclusion, the presence of 10-8 M melatonin in culture medium improves viability and preserves the ultrastructure of oocyte and granulosa cells of early antral follicles cultured in vitro.


Asunto(s)
Fluoresceínas , Melatonina , Femenino , Animales , Bovinos , Melatonina/farmacología , Melatonina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos , Superóxido Dismutasa , ARN Mensajero/metabolismo
8.
BMC Plant Biol ; 24(1): 161, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429697

RESUMEN

BACKGROUND: Drought impairs growth, disturbs photosynthesis, and induces senescence in plants, which results in crop productivity reduction and ultimately jeopardizes human food security. The objective of this study was to determine major parameters associated with drought tolerance and recovery ability of fenugreek (Trigonella foenum-graecum L.), by examining differential biochemical and phenological responses and underlying enzyme activities as well as melatonin roles during drought stress and re-watering for two contrasting landraces. Moreover, the relative expression of three key genes involved in the biosynthesis pathway of diosgenin, including SQS, CAS, and BG, was investigated. RESULTS: Depending on the conditions, drought stress enhanced the activity of antioxidant enzymes and the osmoregulating compounds, non-enzymatic antioxidants, hydrogen peroxide content, and lipid peroxidation levels in most cases. Severe drought stress accelerated flowering time in Shushtar landrace (SHR) but had no significant effects on Varamin (VR). Pretreatment with melatonin delayed flowering time in SHR and caused high drought resistance in this landrace. Furthermore, melatonin significantly enhanced drought adaptability in VR by improving plant recovery ability. DISCUSSION: Based on our results plants' responses to drought stress and melatonin pretreatment were completely landrace-specific. Drought stress caused an increase in the relative expression of CAS gene and ultimately the accumulation of steroidal saponins in SHR. Melatonin compensated for the decrease in biomass production due to drought stress and finally increased steroidal saponins performance in SHR. Our study showed that melatonin can improve drought stress and recovery in fenugreek, but different factors such as genotype, melatonin concentration, and plant age should be considered.


Asunto(s)
Melatonina , Saponinas , Trigonella , Humanos , Melatonina/metabolismo , Trigonella/genética , Trigonella/metabolismo , Sequías , Antioxidantes/metabolismo
9.
Environ Sci Pollut Res Int ; 31(17): 26089-26098, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492135

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are toxic to organisms with melatonin (MT) providing protection for tissues and cells against these. This study investigates the mechanism of damage of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and the cellular protection of MT on grass carp hepatocytes. Grass carp hepatocytes were exposed to 25 µmol/L BDE-47 and/or 40 µmol/L MT for 24 h before testing. Acridine orange/ethidium bromide (AO/EB) double fluorescence staining results showed that BDE-47 could induce cell apoptosis. The expression levels of the endoplasmic reticulum (ER) stress-related genes ire1, atf4, grp78, perk, and chop were also significantly up-regulated (P < 0.01). The levels of the apoptosis-related genes caspase3, bax, and caspase9 were significantly up-regulated (P < 0.0001), while the level of bcl-2 was significantly down-regulated (P < 0.01). Compared with the BDE-47 group, the BDE-47 + MT group showed reduced levels of ER and apoptosis of hepatocytes, while the expression of the ER stress-related genes ire1, atf4, grp78, perk, and chop and the apoptosis-related genes caspase3, bax, and caspase9 were down-regulated (P < 0.05), and the level of bcl-2 was up-regulated (P < 0.01). In conclusion, BDE-47 can activate ER and apoptosis in grass carp hepatocytes, while MT can reduce these responses.


Asunto(s)
Carpas , Melatonina , Animales , Éteres Difenilos Halogenados/metabolismo , Melatonina/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Chaperón BiP del Retículo Endoplásmico , Hepatocitos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico
10.
Plant Cell Rep ; 43(4): 89, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462577

RESUMEN

KEY MESSAGE: This study provides novel insights into the evolution, diversification, and functions of melatonin biosynthesis genes in Prunus species, highlighting their potential role in regulating bud dormancy and abiotic stresses. The biosynthesis of melatonin (MEL) in plants is primarily governed by enzymatic reactions involving key enzymes such as serotonin N-acetyltransferase (SNAT), tryptamine 5-hydroxylase (T5H), N-acetylserotonin methyltransferase (ASMT) and tryptophan decarboxylase (TDC). In this study, we analyzed Melatonin genes in four Prunus species such as Prunus avium (Pavi), Prunus pusilliflora (Ppus), Prunus serulata (Pser), and Prunus persica (Pper) based on comparative genomics approach. Among the four Prunus species, a total of 29 TDCs, 998 T5Hs, 16 SNATs, and 115 ASMTs within the genome of four Prunus genomes. A thorough investigation of melatonin-related genes was carried out using systematic biological methods and comparative genomics. Through phylogenetic analysis, orthologous clusters, Go enrichment, syntenic relationship, and gene duplication analysis, we discovered both similarities and variations in Melatonin genes among these Prunus species. Additionally, our study revealed the existence of unique subgroup members in the Melatonin genes of these species, which were distinct from those found in Arabidopsis genes. Furthermore, the transcriptomic expression analysis revealed the potential significance of melatonin genes in bud dormancy regulation and abiotic stresses. Our extensive results offer valuable perspectives on the evolutionary patterns, intricate expansion, and functions of PavMEL genes. Given their promising attributes, PavTDCs, PavT5H, PavNAT, and three PavASMT genes warrant in-depth exploration as prime candidates for manipulating dormancy in sweet cherry. This was done to lay the foundation for future explorations into the structural and functional aspects of these factors in Prunus species. This study offers significant insights into the functions of ASMT, SNAT, T5H, and TDC genes and sheds light on their roles in Prunus avium. Moreover, it established a robust foundation for further exploration functional characterization of melatonin genes in fruit species.


Asunto(s)
Arabidopsis , Melatonina , Prunus avium , Prunus , Prunus avium/genética , Prunus avium/metabolismo , Prunus/genética , Prunus/metabolismo , 5-Metoxitriptamina , Melatonina/genética , Melatonina/metabolismo , Filogenia , Acetilserotonina O-Metiltransferasa/química , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Arabidopsis/genética , Genómica , Estrés Fisiológico/genética
11.
Physiol Behav ; 279: 114523, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492912

RESUMEN

Melatonin is a neurohormone synthesized by the pineal gland to regulate the circadian rhythms and has proven to be effective in treating drug addiction and dependence. However, the effects of melatonin to modulate the drug-seeking behavior of fentanyl and its underlying molecular mechanism is elusive. This study was designed to investigate the effects of melatonin on fentanyl - induced behavioral sensitization and circadian rhythm disorders in mice. The accompanying changes in the expression of Brain and Muscle Arnt-Like (BMAL1), tyrosine hydroxylase (TH), and monoamine oxidase A (MAO-A) in relevant brain regions including the suprachiasmatic nucleus (SCN), nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus (Hip) were investigated by western blot assays to dissect the mechanism by which melatonin modulates fentanyl - induced behavioral sensitization and circadian rhythm disorders. The present study suggest that fentanyl (0.05, 0.1 and 0.2 mg/kg) could induce behavioral sensitization and melatonin (30.0 mg/kg) could attenuate the behavioral sensitization and circadian rhythm disorders in mice. Fentanyl treatment reduced the expression of BMAL1 and MAO-A and increased that of TH in relevant brain regions. Furthermore, melatonin treatment could reverse the expression levels of BMAL1, MAO-A, and TH. In conclusion, our study demonstrate for the first time that melatonin has therapeutic potential for fentanyl addiction.


Asunto(s)
Trastornos Cronobiológicos , Melatonina , Ratones , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Factores de Transcripción ARNTL , Fentanilo/farmacología , Fentanilo/uso terapéutico , Fentanilo/metabolismo , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/fisiología , Trastornos Cronobiológicos/metabolismo , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología
12.
Mol Immunol ; 169: 10-27, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460474

RESUMEN

OBJECTIVE: Primary Sjogren's syndrome (pSS) is an autoimmune disease of the exocrine glands with no specific or efficient treatments. Melatonin, a natural hormone, is revealed to show multiple biological functions, both receptor-dependent and independent effects, including anti-apoptotic, antioxidant, and anti-inflammatory activities. However, the potential mechanism by which melatonin protects salivary glands (SGs) of pSS from damage needs to be clarified. The purpose of current study was to explore the role and receptor-related mechanisms of melatonin in pSS-induced glandular damage. METHODS AND RESULTS: NOD/Ltj mice were used to spontaneously mimic pSS-induced glandular hypofunction in vivo and primary human salivary gland epithelial (HSGE) cells were stimulated by interferon-γ (IFN-γ) to mimic pSS-induced inflammation in SGs cells in vitro. Melatonin-treated mice exhibited a significant reduction in SG injury of NOD/Ltj mice, which was accompanied by an increase in salivary flow rate, a decrease in inflammatory infiltration within the gland, and a suppression of oxidative stress indicators as well as cell apoptosis. Notably, both melatonin membrane receptors and nuclear receptors played an important role in the anti-apoptotic effects of melatonin on the SGs of NOD/Ltj mice. Furthermore, melatonin blocked the IL-6/STAT3 pathway through receptor-dependent manners in IFN-γ-stimulated HSGE cells. However, it was evident that the anti-oxidative and anti-apoptotic properties of melatonin on IFN-γ-stimulated HSGE cells were diminished by IL-6 treatment. CONCLUSION: Melatonin had the potential to mitigate inflammation, oxidative stress, and apoptosis in SGs of pSS by inhibiting the IL-6/STAT3 pathway through receptor-dependent mechanisms. This intervention effectively prevented glandular damage and preserved functional integrity.


Asunto(s)
Melatonina , Síndrome de Sjögren , Humanos , Ratones , Animales , Interleucina-6/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Síndrome de Sjögren/tratamiento farmacológico , Ratones Endogámicos NOD , Glándulas Salivales , Inflamación , Interferón gamma/metabolismo , Factor de Transcripción STAT3/metabolismo
13.
Life Sci ; 344: 122557, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479596

RESUMEN

Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.


Asunto(s)
Neoplasias de la Mama , Melatonina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estrés Oxidativo , Neoplasias de la Mama/patología
14.
Biomolecules ; 14(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38540717

RESUMEN

BACKGROUND: The distinctive feature of liver fibrosis is the progressive replacement of healthy hepatic cells by the extracellular matrix protein, which is abundant in collagen I and III, with impaired matrix remodeling. The activation of myofibroblastic cells enhances the fibrogenic response of complex interactions of hepatic stellate cells, fibroblasts, and inflammatory cells to produce the excessive deposition of the extracellular protein matrix. This process is activated by multiple fibrogenic mediators and cytokines, such as TNF-α and IL-1ß, accompanied with a decrease in the anti-fibrogenic factor NF-κß. Mesenchymal stem cells (MSCs) represent a promising therapy for liver fibrosis, allowing for a more advanced regenerative influence when cultured with extrinsic or intrinsic proliferative factors, cytokines, antioxidants, growth factors, and hormones such as melatonin (MT). However, previous studies showed conflicting findings concerning the therapeutic effects of adipose (AD) and bone marrow (BM) MSCs; therefore, the present work aimed to conduct a comparative and comprehensive study investigating the impact of MT pre-treatment on the immunomodulatory, anti-inflammatory, and anti-apoptotic effects of AD- and BM-MSCs and to critically analyze whether MT-pre-treated AD-MSCs and BM-MSCs reveal equal or different therapeutic and regenerative potentials in a CCl4-injured liver experimental rat model. MATERIALS AND METHODS: Six groups of experimental rats were used, with ten rats in each group: group I (control group), group II (CCl4-treated group), group III (CCl4- and BM-MSC-treated group), group IV (CCl4 and MT-pre-treated BM-MSC group), group V (CCl4- and AD-MSC-treated group), and group VI (CCl4 and MT-pre-treated AD-MSC group). Liver function tests and the gene expression of inflammatory, fibrogenic, apoptotic, and proliferative factors were analyzed. Histological and immunohistochemical changes were assessed. RESULTS: The present study compared the ability of AD- and BM-MSCs, with and without MT pre-treatment, to reduce hepatic fibrosis. Both types of MSCs improved hepatocyte function by reducing the serum levels of ALT, aspartate aminotransferase (AST), alkaline phosphatase (AKP), and total bilirubin (TBIL). In addition, the changes in the hepatocellular architecture, including the hepatocytes, liver sinusoids, central veins, portal veins, biliary ducts, and hepatic arteries, showed a decrease in hepatocyte injury and cholestasis with a reduction in inflammation, apoptosis, and necrosis of the hepatic cells, together with an inhibition of liver tissue fibrosis. These results were augmented by an analysis of the expression of the pro-inflammatory cytokines TNFα and IL-1ß, the anti-fibrogenic factor NF-κß, the apoptotic factor caspase-3, and the proliferative indicators antigen Ki-67 and proliferating cell nuclear antigen (PCNA). These findings were found to be statistically significant, with the restoration of normal parameters in the rats that received AD-MSCs pre-treated with MT, denoting optimal regenerative and therapeutic effects. CONCLUSIONS: AD-MSCs pre-treated with MT are the preferred choice in improving hepatic fibrosis and promoting the therapeutic and regenerative ability of liver tissue. They represent a very significant tool for future stem cell use in the tissue regeneration strategy for the treatment of liver diseases.


Asunto(s)
Melatonina , Células Madre Mesenquimatosas , Ratas , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Cirrosis Hepática/patología , Hígado/metabolismo , Citocinas/metabolismo , Células de la Médula Ósea
15.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542522

RESUMEN

Melatonin is a ubiquitous regulator in plants and performs a variety of physiological roles, including resistance to abiotic stress, regulation of growth and development, and enhancement of plant immunity. Melatonin exhibits the characteristics of a phytohormone with its pleiotropic effects, biosynthesis, conjugation, catabolism, effective concentration, and the shape and location of its dose-response curves. In addition, CAND2/PMTR1, a phytomelatonin receptor candidate belonging to the G protein-coupled receptors (GPCRs), supports the concept of melatonin as a phytohormone. However, the biochemistry of plant melatonin receptors needs to be further characterized. In particular, some of the experimental findings to date cannot be explained by known GPCR signaling mechanisms, so further studies are needed to explore the possibility of novel signaling mechanisms.


Asunto(s)
Melatonina , Melatonina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Melatonina/metabolismo , Inmunidad de la Planta , Plantas/metabolismo
16.
Chronobiol Int ; 41(3): 329-346, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516993

RESUMEN

The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.


Asunto(s)
Melatonina , Perciformes , Glándula Pineal , Animales , Ritmo Circadiano/fisiología , Fotoperiodo , Glándula Pineal/metabolismo , Melatonina/metabolismo , Expresión Génica , Perciformes/genética , Perciformes/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo
17.
Discov Med ; 36(182): 509-517, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38531791

RESUMEN

BACKGROUND: Currently, the role of melatonin (MT) in neuronal damage remains unclear and this study aimed to explore the protective effects of MT on neurons in an in vitro cell injury model. METHODS: The Sprague Dawley (SD) rat traumatic brain injury (TBI) model was prepared, and brain tissue extract (BTE) from the injured area were generated. To establish a cell injury model in vitro, the BTE was added to the culture medium during the neuron culture process. MT was introduced into the culture medium of the cell injury model to observe its protective effects on neurons. Relevant molecular biology experiments were conducted to observe cellular oxidative stress status, inflammation, endoplasmic reticulum (ER) stress, mitochondrial damage, and neuronal apoptosis. RESULTS: When compared to the control group, the BTE group exhibited a significant increase in cellular oxidative stress, inflammation, neurofilament light polypeptide (NEFL) expression, and ER stress. Additionally, the mitochondrial DNA (mtDNA) copy number significantly decreased, and there was a higher count of apoptotic cells (p < 0.05). Upon the addition of MT to the culture medium of the in vitro cell injury model, there was a significant reduction in cellular oxidative stress, inflammation, and NEFL levels. This addition also mitigated ER stress, increased mtDNA copy numbers, and decreased the ratio of cell apoptosis (p < 0.05). CONCLUSIONS: In the in vitro cell injury model, MT demonstrates the capacity to inhibit cellular oxidative stress, inflammation, and ER stress levels. Additionally, it diminishes mtDNA damage, fosters cell viability, and serves as a protective agent against both apoptosis and necrosis in neurons.


Asunto(s)
Melatonina , Ratas , Animales , Ratas Sprague-Dawley , Melatonina/metabolismo , Melatonina/farmacología , Apoptosis , Estrés Oxidativo , Neuronas/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Inflamación/metabolismo
18.
J Cell Mol Med ; 28(7): e18160, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506067

RESUMEN

Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.


Asunto(s)
Apolipoproteína E4 , Melatonina , Ratones , Animales , Apolipoproteína E4/metabolismo , Apolipoproteína E4/farmacología , Depresión , Melatonina/farmacología , Melatonina/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Proteómica , Mitocondrias/metabolismo , Apolipoproteínas E/metabolismo , Ratones Transgénicos , Proteínas Quinasas Activadas por AMP/metabolismo
19.
Sci Total Environ ; 923: 171474, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447734

RESUMEN

Manganese (Mn), a common environmental and occupational risk factor for Parkinson's disease (PD), can cause central nervous system damage and gastrointestinal dysfunction. The melatonin has been shown to effectively improve neural damage and intestinal microbiota disturbances in animal models. This research investigated the mechanism by which exogenous melatonin prevented Mn-induced neurogenesis impairment and neural damage. Here, we established subchronic Mn-exposed mice model and melatonin supplement tests to evaluate the role of melatonin in alleviating Mn-induced neurogenesis impairment. Mn induced neurogenesis impairment and microglia overactivation, behavioral dysfunction, gut microbiota dysbiosis and serum metabolic disorder in mice. All these events were reversed with the melatonin supplement. The behavioral tests revealed that melatonin group showed approximately 30 % restoration of motor activity. According to quantitative real time polymerase chain reaction (qPCR) results, melatonin group showed remarkable restoration of the expression of dopamine neurons and neurogenesis markers, approximately 46.4 % (TH), 68.4 % (DCX in hippocampus) and 48 % (DCX in striatum), respectively. Interestingly, melatonin increased neurogenesis probably via the gut microbiota and metabolism modulation. The correlation analysis of differentially expressed genes associated with hippocampal neurogenesis indicated that Firmicutes-lipid metabolism might mediate the critical repair role of melatonin in neurogenesis in Mn-exposed mice. In conclusion, exogenous melatonin supplementation can promote neurogenesis, and restore neuron loss and neural function in Mn-exposed mice, and the multi-omics results provide new research ideas for future mechanistic studies.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Ratones , Animales , Melatonina/farmacología , Melatonina/metabolismo , Manganeso/metabolismo , Hipocampo/metabolismo , Neuronas Dopaminérgicas
20.
Funct Plant Biol ; 512024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354692

RESUMEN

Water stress (drought and waterlogging) leads to an imbalance in plant water distribution, disrupts cell homeostasis, and severely inhibits plant growth. Melatonin is a growth hormone that plants synthesise and has been shown to resist adversity in many plants. This review discusses the biosynthesis and metabolism of melatonin, as well as the changes in plant morphology and physiological mechanisms caused by the molecular defence process. Melatonin induces the expression of related genes in the process of plant photosynthesis under stress and protects the structural integrity of chloroplasts. Exogenous melatonin can maintain the dynamic balance of root ion exchange under waterlogging stress. Melatonin can repair mitochondria and alleviate damage caused by reactive oxygen species and reactive nitrogen species; and has a wide range of uses in the regulation of stress-specific genes and the activation of antioxidant enzyme genes. Melatonin improves the stability of membrane lipids in plant cells and maintains osmotic balance by regulating water channels. There is crosstalk between melatonin and other hormones, which jointly improve the ability of the root system to absorb water and breathe and promote plant growth. Briefly, as a multifunctional molecule, melatonin improves the tolerance of plants under water stress and promotes plant growth and development.


Asunto(s)
Melatonina , Melatonina/farmacología , Melatonina/genética , Melatonina/metabolismo , Deshidratación , Estrés Fisiológico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Fotosíntesis , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...